
Journal of Applied Mechanics and Technical Physics, Vol. 44, No. 6, pp. 809–813, 2003

NONLINEAR DEFORMATION AND STABILITY OF ELLIPTIC

CYLINDRICAL SHELLS UNDER TORSION AND BENDING

UDC 629.7.023:539.4:384.4L. P. Zheleznov, V. V. Kabanov, and D. V. Boiko

The problem of nonlinear deformation and buckling of noncircular cylindrical shells under combined
loading is solved by the variational finite-element method in the displacement formulation. A nu-
merical algorithm for solving the problem is proposed. Stability of cylindrical shells with an elliptic
cross-sectional contour under a combined action of torsion and bending is analyzed. The effect of
cross-sectional ellipticity and nonlinear prebuckling deformation on the critical loads and buckling
mode is studied.

Key words: elliptic cylindrical shells, combined torsion and bending, nonlinear deformation, sta-
bility, finite-element method.

1. Finite Element and Algorithm for Solving the Problem. We consider a cantilevered (u = v

= w = ∂w/∂x = 0) noncircular cylindrical shell under the action of torque Mt and bending moment M applied to
the end of the shell (Fig. 1). The loaded end of the shell is reinforced by a frame rigid in its plane. The torque
is modeled by the tangential load S = Mt/(2ω) acting per unit length (ω = πab is the area bounded by the shell
cross section and a and b are the semiaxes of the ellipse). The bending moment M is modeled by the axial load
distributed nonuniformly over the shell circumference T = Mz1/J (z1 is the distance from the points of the shell
contour to the ellipse axis AA and J is the cross-sectional moment of inertia about the axis AA).

We divide the shell by the principal-curvature lines into m and n parts along the generatrix and directrix, re-
spectively. Thus, the shell is modeled by m×n curvilinear rectangular finite elements. Using bilinear approximation
for tangential deformation displacements and bicubic approximation for deflections and finite-element displacement
as rigid bodies, we write the total displacements of finite-element points in the form

u = a1xy + a2x+ a3y + a4 + a6ψ2 + a20ψ1,

v = a5xy + a6xc+ a7y + a8(ψ1c+ ψ2s)− a20xs+ a23c− a24s,

w = a9x
3y3 + a10x

3y2 + a11x
3y + a12x

3 + a13x
2y3 + a14x

2y2 + a15x
2y + a16x

2 (1.1)

+ a17xy
3 + a18xy

2 + a19xy + a20xc+ a21y
3 + a22y

2 + a23s+ a24c+ a6xs+ a8(ψ1s− ψ2c).

For an arbitrary shell [1], we have ψ1 =
∫
Rs dβ, ψ2 = −

∫
Rc dβ, where c = cosβ, and s = sinβ, and R is the

curvature radius of the shell contour.
For an elliptic shell, we obtain

z2

b2
+
y2

a2
= 1, R =

a2b2

d3
, d2 = a2s2 + b2c2, ψ1 = −b

2c

d
, ψ2 = −a

2s

d
.

Relations (1.1) can be written in the matrix notation as

ũ = Pa, (1.2)
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where ũ = {u, v, w}t is the displacement vector of the points of the mid-surface of the finite element,
a = {a1, . . . , a24}t is the vector of unknown coefficients ai, and P is the 3× 24 coupling matrix whose elements are
the multipliers pij at the coefficients ai in functions (1.1). Expressing the coefficients ai in terms of nodal unknowns,
we obtain

a = B−1ū. (1.3)

Here ū = {ui, vi, wi, ϑ1i, ϑ2i, wxyi, uj , vj , wj , ϑ1j , ϑ2j , wxyj , uk, . . . , wxyk, un, . . . , wxyn}t is the vector of nodal dis-
placements, angles of rotation, and mixed derivatives of deflection, and B is a 24 × 24 matrix whose nonzero
elements have the form

b1,j = p1,j , b2,j = p2,j , b3,j = p3,j , b4,j = (p3,j)x,

b5,j = (p2,j − (p3,j)y)/R, b6,j = (p3,j)xy (x = −a1, y = −b1),

b7,j = p1,j , b8,j = p2,j , b9,j = p3,j , b10,j = (p3,j)x,

b11,j = (p2,j − (p3,j)y)/R, b12,j = (p3,j)xβ (x = −a1, y = b1),

b13,j = p1,j , b14,j = p2,j , b15,j = p3,j , b16,j = (p3,j)x,

b17,j = (p2,j − (p3,j)β)/R, b18,j = (p3,j)xy (x = a1, y = −b1),

b19,j = p1,j , b20,j = p2,j , b21,j = p3,j , b22,j = (p3,j)x,

b23,j = (p2,j − (p3,j)y)/R, b24,j = (p3,j)xy (x = a1, y = b1),

j = 1, . . . , 24, a1 = L/(2m), b1 = l/(2n)

(L and l are the characteristic lengths of the shell along the generatrix and directrix, respectively; the subscripts x,
y, and β denote partial differentiation with respect to x, y, and β, respectively).

Substituting (1.3) into (1.2), we obtain the relation between the displacements of element points and nodal
unknowns:

ũ = PB−1ū.

There are six unknowns at each node and, hence, the finite element has 24 degrees of freedom. To determine the
nodal unknowns, we use the Lagrange variational equation δΠ = 0, where Π is the potential energy of the shell. The
potential energy is written in terms of nonlinear strain–displacement relations [2]. The equation δΠ = 0 leads to a
system of nonlinear algebraic equations for nodal unknowns. This system is solved by the step-by-step method by
varying the load. At each step, we use the Newton–Kantorovich linearization method; its equation can be written
in the form [3]

H(ūn)∆ū = qe −G(ūn), ūn+1 = ūn + ∆ū, (1.4)
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where H is the Hessian matrix of the shell determined by the second variation of the potential strain energy, qe is
the vector of the nodal load, and G is the gradient of the potential strain energy. Equations (1.4) are constructed in
a standard manner with allowance for boundary conditions [4]. The boundary conditions are formulated as follows.
For zero nodal boundary displacements, the corresponding row of the Hessian matrix H of the boundary element
and the corresponding element of the nodal-load vector are set equal to zero, and the diagonal coefficient in the
matrix H is replaced by a large number.

The system of linear algebraic equations (1.4) is solved by the Kraut method using decomposition of the
Hessian matrix H = LtDL (D is the diagonal matrix and L is the triangular matrix). Once the nodal displacements
are determined, the stresses and strains are calculated by the known formulas of [2]. Stability is controlled by
investigating the positive definiteness of the Hessian matrix, which reduces to verifying that the elements of the
diagonal matrix D are positive. The appearance of negative elements means that the shell is unstable. After the
loading parameter for which the equilibrium state becomes unstable is calculated, we determine the buckling mode
of the shell by solving the system Hδ = 0, where δ is the vector of bifurcational nodal displacements. To this end,
we find the row of the matrix H that corresponds to the first negative element of the matrix D. This row and
the corresponding column of the matrix H are deleted. We replace the diagonal coefficient by unity, multiply the
corresponding column by the subcritical displacement that refers to the degenerated row and move this column to
the right side of the system. Solving the resulting system, we obtain the buckling mode of the shell.

2. Results of Numerical Analysis of Nonlinear Deformation and Stability of Elliptic Shells.
Calculations were performed for the following parameters: shell length L = 500 and 1100 mm, thickness h = 5 mm,
Young’s modulus E = 0.7 · 105 MPa, Poisson’s ratio ν = 0.3, and equiperimeter radius (cross-sectional radius of a
circular shell with a perimeter P equal to the perimeter of the elliptic shell) R0 = 1000 mm. The value of R0 was
calculated by the formula

R0 =
P

2π
=

2a
π

π/2∫
0

{
1 +

[( b
a

)2

− 1
]

sin2 ψ
}1/2

δψ =
2a
π
E
(π

2
,
b

a

)
,

where E(π/2, b/a) is the complete elliptic integral of the second kind.
Figure 2 shows the parameters km = M∗/M0 and kp = M∗t /Mt0 versus the ellipticity parameter a/b for

the linear and nonlinear prebuckling states (dashed and solid curves, respectively) of a shell with h = 5 mm and
L = 500 mm produced by a separate action of the moments [M∗ and M∗t are the critical bending moment and torque,
respectively, and M0 = πER0h

2/
√

3(1− ν2) and Mt0 = 2πCR2
0Sb are the critical bending moment and torque for

the equiperimeter circular cylindrical shell, respectively, Sb = 0.78Eh(h/R0)5/4(R0/L)1/2, and C = 0.953]. As the
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ellipticity increases, the values of kp decrease almost proportionally to the ratio of the minor semiaxis to the major
semiaxis. The most stable shell is the equiperimeter circular shell (kp = 1.16). The same effect is observed for
bending of flattened shells (a/b > 1). High shells (a/b < 1) were found to be more stable compared to equiperimeter
circular shells due to the higher cross-sectional moment of inertia (double–tee effect). The most stable shells are
those with a/b ≈ 0.7 (km = 1.34). Nonlinearity affects only slightly. For bending, the effect of nonlinearity becomes
more pronounced: the difference between the critical moments reaches 10%.

Figure 3a and b shows the curves Rm(Rp) obtained, respectively, for linear and nonlinear prebuckling
stress–strain states of the shells with h = 5 mm and L = 500 mm for various values of the ellipticity parameter
(Rm = km/km0 = M∗/M∗p and Rp = kp/kp0 = M∗t /M

∗
t,p, where km0, kp0 and M∗p and M∗t,p are the critical values

of the parameters km and kp and moments M and Mt for separate loading). One can see from Fig. 3 that the
nonlinearity of the prebuckling state affects the dependence Rm(Rp) only slightly.
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Figure 4 shows the curves Rm(Rp) for a long shell (h = 5 mm and L = 1100 mm) that refer to the linear
prebuckling stress–strain state.

The buckling mode of shells depends strongly on the length, ellipticity parameter, and ratio km/kp. For
km/kp < 1 and a/b < 1, one to three oblique wrinkles are formed on the lateral surface of the shell upon buckling.
As the ratios a/b and km/kp increase, wrinkling is shifted from the lateral surface to the lower part of the shell,
and the number of waves decreases from three to one. For km/kp < 1, high shells buckle under the action of the
tangential forces, and three oblique wrinkles are formed. For km/kp > 1, buckling occurs in the lower part of the
shells due to the maximum compressive axial stresses and diamond-shaped dents are formed. Figure 5 shows the
buckling modes of the shell with L = 1100 mm, h = 5 mm, and a/b = 0.4 under torsion (a), bending (b), and
combined action of bending and torsion (km/kp = 1) (c).

The results described above were obtained using a finite-element mesh that ensured convergence of the
solution.
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2. É. I. Grigolyuk and V. V. Kabanov, Stability of Shells [in Russian], Nauka, Moscow (1978).
3. S. V. Astrakharchik, L. P. Zheleznov, and V. V. Kabanov, “Nonlinear deformation and stability of shells and

panels of nonzero Gaussian curvature,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 2, 102–108 (1994).
4. V. V. Kabanov and S. V. Astrakharchik, “Nonlinear deformation and stability of reinforced cylindrical shells

under bending,” in: Spatial Structures in the Krasnoyarsk Region (collected scientific papers) [in Russian],
Krasnoyarsk (1985), pp. 75–83.

813


